
Representing and Segmenting 2D Images by

Means of Planar Maps with Discrete

Embeddings.

Achille Braquelaire, Jean-Philippe Domenger

LaBRI,Laboratoire Bordelais de Recherche en Informatique
Université Bordeaux 1, 351, cours de la Libération, 33405 Talence, France

Abstract

Representing the regions of a segmented image is an important aspect of image
segmentation. Several different models have been proposed to represent the regions
of a segmented image but most of them are dedicated to a specific method. Among
the non hierarchical models, the model of planar maps with discrete embedding
is certainly the most versatile one. Maps have the great advantage to provide a
continuity of representation from the abstract mathematical model to the concrete
implementation. They encode and provide most of topological and geometrical fea-
tures required by segmentation algorithms and can be efficiently updated. In this
paper we give an overview of the use of planar maps with discrete embedding in
the context of image segmentation and we show how to design, implement and use
a general environment for 2D image segmentation.

Key words: Image representation, image segmentation, combinatorial maps,
discrete boundaries, feature extraction.

1 Introduction

Representing the regions of a segmented image is an important aspect of image
segmentation. On the one hand the representation provides the features used
to build the decomposition of the image into homogeneous regions. Thus the
description of the decomposition must be powerful enough to allow to extract
any required feature. On the other hand segmentation process generally build

Email address: {achille.braquelaire,jean-philippe.domenger@labri.fr}
(Achille Braquelaire, Jean-Philippe Domenger).

Preprint submitted to Elsevier Science 4 November 2005

solutions by refining progressively the decomposition. Thus the model used to
described regions must be efficiently updated all along the segmentation steps.
The simplest way to get an efficient model is to specialize it according to the
minimal set of operations required by a specific method. But such a model
is shown to be too restrictive to implement more general methods. Efficiency
and versatility are thus two objectives which are hard to conciliate and when
many models have been proposed to represent the regions of a segmented
image, most of them are dedicated to a specific method.

The most basic method to represent segmented images is the array of labels [1–
3] which consists in associating each pixel with a label such that all the pixels
sharing a same label belong to a same region. This structure is very simple to
implement but is ill-adapted to region splitting which involves a relabeling of
all the pixels of the new sub-regions. Moreover this model does not efficiently
provide topological features.

Hierarchical data structures allows to process images at different level of res-
olution. Several hierarchical models have been proposed such as quadtrees [4–
7], pyramids [8–10], irregular pyramids [11–13], linked pyramids [14,15], dual
pyramids [16], and more recently combinatorial pyramids [17]. Such data struc-
tures are very efficient to implement top-down region based algorithms. Start-
ing at a coarse level of resolution, the initial image partition can be refined
from level to level until reaching the resolution level of the original image.
Nevertheless the hierarchical organisation of data restricts the possibilities of
merging (and thus of interactive editing) and features like boundary geometry
or neighbourhood are not immediate to extract.

Among the non hierarchical models, the model of embedded planar maps, or
topological maps with discrete embedding [18–21], is certainly the most ver-
satile one. Embedded maps encode both the geometry and the topology of
the regions of a segmented image and allow free region editing, splitting, and
merging. They are more general than region adjacency graphs [22,23] which
have no geometric embeddings, which does not encode the whole topology
of the segmented image, and which are ill-adapted to splitting. Two dimen-
sional planar maps have been used for image editing [18,24–26,20], for image
segmentation [19,21,27–30] and for video processing [31–33]. Maps have been
generalized in the context of topological based scene modeling and in order to
represent n-dimensional spaces [34], and several recent works have addressed
the problem of the representation of 3D discrete images with maps for 3D
image segmentation [35–39].

In the context of 2D image analysis, embedded maps provide an efficient frame-
work to implement most of the operations involved by segmentation algo-
rithms [40], such as domain reconstruction (or restoration) [41] which consists
in traversing each point of the region domain, region splitting and merging,

2

point inclusion or point membership property [42,43] which consists in deter-
mining if a point is located inside or outside a given region, region localisation
which consists in finding the region containing a given point, obtaining of
geometric features (such as area, perimeter, boundary shape, etc.) [44,43,45]
and of topological features (neighbourhood, surroundness [44], regions inside
or outside a given boundary, counting holes [46,47], etc.).

In this paper we give an overview of the use of planar maps with discrete
embedding in the context of image segmentation. Maps have the great advan-
tage to provide a continuity of representation from the abstract mathematical
model to the concrete implementation. We would like to illustrate that by
showing how to design, implement and use a general environment for 2D im-
age segmentation, from the mathematical model up to a real application. In
the following section we recall how to represent the topology of a continuous
segmented image with a set of planar maps. In section 3 we show how to as-
sociate such a set of maps with discrete boundaries and thus how to use this
model to represent and segment discrete images. In sections 4 and 5 we briefly
describe data structures and algorithms to use this model in the context of
image segmentation. In section 6 we specify a small API that is enough to im-
plement most of split and merge segmentation methods. Finally in section ??

we describe a full example of constrained segmentation method designed with
this API to solve a real problem in the context of medical imaging.

2 Representing regions

A segmented image is a partition of an image into a set of regions, each region
being a connected subset of points of the image. In the Euclidean plane a region
is simply connected when its boundary is a simple closed curve also called
Jordan’s curve. Remark that a Jordan’s curve defines two regions: a bounded
region without hole which is called the inside region, and its complement which
is an unbounded region with a hole which is called the outside region. When
a bounded region is not simply connected, it has some holes and its boundary
consists of several Jordan’s curves, one of them — the outer boundary —
surrounding all the other ones — the inner boundary(ies).

Consider the example developed in Fig 1. The image of Fig 1-a can be seg-
mented into seven regions each one being a homogeneously textured area. The
region boundaries have been drawn in white on the image. The wide region
located in the bottom of the image, say A, is a simply connected region and
its boundary consists of a unique Jordan’s curve. On the other hand the back-
ground is a bounded region with two holes and thus is not simply connected.
Its outer boundary is the boundary of the image and its inner boundary con-
sists of two Jordan’s curves, one of which being the outer boundary of the

3

region A and the other one being the largest oval-shaped contour.

In the Euclidean plane the boundaries of the regions of a segmented image
can be partitioned in a natural way according to their neighbouring. Consider
for instance the both small half-oval shaped regions of the running example.
Both these regions share a part of boundary which is an horizontal line. Thus
the boundary of these regions can be split into three segments of boundary
which are respectively the horizontal line shared by the both regions, the part
of boundary which is adjacent to the upper region and not to the lower one,
and the part which is adjacent to the lower one and not to the upper one.
Each segment of boundary is a Jordan’s arc (a set of points homeomorphic to
the real interval [0, 1]). This decomposition induces a graph the edges of which
correspond to the Jordan’s arcs and the vertices to the segment junctions. The
graph induced by the boundaries of the segmented image of Fig 1-a is the graph
shown in Fig 1-b. This graph has height vertices labeled from a to h and eleven
edges. Remark that it is necessary to add an arbitrary vertex to associate
with a graph edge the outer boundary of an isolated region. For instance the
vertices labelled by a and h have been arbitrarily added on respectively the
outer boundary of the image and the outer boundary of the region A.

A partition of the Euclidean plane into simply connected region is called a topo-

logical planar map, or simply a planar map. More formally a planar map [48]
is a decomposition of the Euclidean plane into a finite set V of points, a finite
set E of disconnected open Jordan’s curves, each one having its extremities in
V , and a finite set of simply connected regions whose boundaries are unions
of elements of V and E. The elements of V and E are respectively the vertices
and the edges of the map, and each simply-connected region is called a face.
The faces corresponding to bounded regions are called the finite faces and the
face corresponding to the unique unbounded region is called the infinite face.

Each connected component of the boundary graph of a segmented image is
thus a planar map. For instance on the running example the boundary graph
is decomposed into four planar maps which are the subgraphs defined respec-
tively on the set of nodes {a}, {b, c}, {d, e, f, g}, and {h}. The second one has
two vertices, three edges (labeled by 8, 9, and 10) and three faces, two finite
faces which are the face surrounded by the sequence of edges (8, 9) and (8, 10),
and an infinite face the boundary of which is the sequence (9, 10).

A topological map can be efficiently encoded by a pair 〈σ, α〉 of permutations
defined on a set of labels called darts. Each dart can be seen as an half-edge of
the topological map. Given an orientation of the plane, say counterclockwise,
a vertex v of the map is describe by a circular sequence (d1, d2, . . . , dn) which
is the sequence of darts reaching it. This sequence is a cycle of the permutation
σ and the notation (d1, d2, . . . , dn) is a shortcut for σ(d1) = d2, . . . , σ(dn−1) =
dn, and σ(dn) = d1. The permutation σ is the set of all such cycles. The

4

permutation α is an involution without fixed point (each cycle is of length 2).
Each cycle (d, α(d)) of α encodes an edge of the map by linking two darts.
Such a representation is called a combinatorial map [49].

If π is a permutation and x is an element which has an image by π, we denote
by π∗(x) the cycle of π that contains x. According to this notation, σ∗(d)
(resp. α∗(d)) is the vertex (resp. the edge) that contains the dart d.

It may be convenient to encode the darts by positive and negative integers
such that α(d) = -d [26]. According to this convention, a representation of the
four combinatorial maps of the running example is shown in Fig 1-c. The set
of darts is the set { -11, . . . , -1, 0, 1, . . . , 11}. The related permutations are:

• σ1 = (-1, 1) and α1 = (-1, 1);
• σ2 = (8, 9, -10)(-8, 10, -9) and α2 = (-8, 8)(-9, 9)(-10, 10);
• σ3 = (-2, 4, -7)(3, -5, -4)(5, 6, 7)(2, -6, -3) and α3 = (-2, 2)(-3, 3)(-4, 4)(-5, 5)

(-6, 6)(-7, 7);
• σ4 = (11, -11) and α4 = (-11, 11).

A face the map is encoded by the circular sequence of darts encountered when
turning around the face, clockwise for a finite face and counterclockwise for
the infinite one. For instance the map 〈σ3, α3〉 has four faces which are the
cycles (-2, -6, 7), (5 -4, -7), (-5, 6, -3) and (4, 3, 2) (see also Fig. 2-a). The
infinite face (in this case the last one) represents the unbounded region of the
Euclidean plane which is the complement of the union of all the finite regions.

A given combinatorial map 〈σ, α〉 may be associated with several different
topological maps. That means that there are different ways to draw a combi-
natorial map on the plane. In fact there as many topological maps as there are
faces in the combinatorial map. To draw a combinatorial map consists thus in
first deciding which face is the infinite face and then to organize vertices and
edges according to this choice. Once the infinite face is set, all the possible
drawings are topologically equivalent.

A remarkable property of combinatorial maps is that the faces of the map
〈σ, α〉 are encoded by the cycles of the permutation ϕ = σ ◦ α. Consider for
instance a dart of the map 〈σ3, α3〉, say the dart -2. The cycle of -2 in the
permutation ϕ is the circular sequence (σ ◦ α)∗(-2). We have σ(α(-2)) = -6,
σ(α(-6)) = 7, and σ(α(-7)) = -2. The cycle ϕ∗(-2) is thus the finite face
(-2, -6, 7).

The permutations ϕ and σ are defined on the same set of darts and the tuple
〈ϕ, α〉 is also a combinatorial map. Moreover the maps 〈σ, α〉 and 〈ϕ, α〉 are
dual. The orientation apart the dual map can be drawn by associating with
each face of the primal map a vertex of the dual map, and by intersecting each
edge of the primal map by an edge of the dual map, both edges being defined
by the same pair of darts. For instance, on the running example, the dual map

5

of 〈σ3, α3〉 is the map 〈ϕ3, α3〉 with ϕ3 = (-2, -6, -7) (5, -4, -7)(-5, 6, -3)(4, 3, 2)
and α3 = (-2, 2)(-3, 3)(-4, 4)(-5, 5)(-6, 6)(-7, 7) (see Fig. 2-b). Let us underline
that a dual map encodes the adjacency of the regions of a segmented image
in a more general way than a region adjacency graph does, since there is in
the dual map an edge for each segment of boundary shared by two adjacent
regions.

Combinatorial maps are a very simple and elegant formalism to describe both
planar maps and operations defined on them. For instance, on the running
example, removing the edge (−5, 5) consists in merging the face containing
the dart 5 which the one containing the dart -5, i.e. the faces (-5, 6, -3)
and (-7, 5, -4). This operation may be defined either on the map 〈σ, α〉,
by setting σ′(3) = -4 and σ′(7) = 6, or on the map 〈ϕ, α〉, by replacing
both cycles (-5, 6, -3) and (5, -4, -7) by the cycle (6, -3, -4, -7) (see for
instance [26,20,27,50,51] for a formal definition of these operations).

Remark that neither the vertices nor the edges need to be explicitly encoded.
Each vertex, edge or face may be represented by any dart of the permutation
cycle that represents it. Moreover by taking α(d) = -d the permutation α has
not to be stored. So a combinatorial map, and thus a topological map, can
be implemented with only an array of integers the size of which is twice the
number of edges of the map.

It is noticeable that the same construction provides both a mathematical tool
for formal proof and an efficient data structure for implementation purpose.
Finally we may chose to implement either the primal representation or the
dual one, each of then being obtainable from the other one with a negligible
computational overhead.

Since a map encode the topology of only one connected component of the
boundary graph, there are as many maps associated with the boundary graph
as there are connected components. It is thus necessary to encode how these
maps contribute to the representation of the topology of a non simply con-
nected region of the segmented image.

It is of course possible to define an inclusion tree which nodes are the regions
of the segmented image [46,52]. Nevertheless it is enough to encode the inclu-
sion for only the infinite faces. It may be done in a straightforward way by
adding to the model an inclusion relation which associates the finite face cor-
responding to the outer boundary of each non simply connected region with
the list of the infinite faces corresponding to the outer boundary of the holes
this region contains. The finite face is called a parent face and the infinite ones
the associated children faces. For instance the inclusion relation of the four
maps of Fig 1-c may be described by the relation: (1, -11), (1, 4), (-6 -10).

Of course this encoding is not unique since any dart of a face cycle may be used

6

to define the relation. We shall see in the next section that it is convenient to
associate a label which each face. The relation of inclusion will then be defined
in a unique way according to this labeling. Note that operations on maps may
also modify this relation [20,27,51].

3 Representing discrete regions

In order to use combinatorial maps with discrete images it is necessary to get
a representation of a discrete segmented image that can be associated with a
set of planar maps. It requires the decomposition of a segmented image into
discrete correspondents of vertices, edges and faces.

Discrete boundaries can be defined either in the image domain as pixel based
contours [53–55,41,43] or in a discrete space different of the image space as
interpixel contours [56,41,57–61]. Pixel based contours have several drawbacks
when used to represent the boundaries of a segmented image. For instance
if boundary segments are part of image regions a given boundary segment
belongs to only one of its neighbouring regions, and if boundary segments are
not part of image regions, the set of regions does not define a partition of the
image. On the other hand, the interpixel representation provides a consistent
topological framework [62] and makes it possible to define in a natural way
discrete analogous of the edges of the boundary graph [61,20]. On the running
example of Fig 1, a discrete discrete segmented image is displayed in Fig 1-
d. The pixels are represented as colored unit square and the regions are the
maximal 4-connected component. The image of Fig 1-e shows an example of
boundaries defined with pixel contours and the one of Fig 1-f an example of
interpixel boundaries which is compatible with the boundary graph of Fig 1-b.

Intuitively interpixel boundaries are drawn between pixels. If the image plane
is the discrete space Z × Z, the boundary plane is the half-integer plane which
is obtained by translating the discrete plane Z × Z by (− 1

2
,−1

2
) [61]. A point

p = (xp, yp) of the image plane and a point p′ = (x′
p, y

′
p) of the boundary plane

are half-neighbours if |xp − x′
p| = |yp − y′

p| = 1

2
. Each point of the image plane

has four half-neighbours in the boundary plane and each point of the boundary
plane has four half-neighbours in the image plane. Finally two adjacent points
of the boundary plane share exactly two half-neighbours in the image plane.

Each point of the boundary plane having two or more half-neighbouring points
belonging to different regions of a segmented image is a boundary point. Two
adjacent boundary points are linked if their common half-neighbours belong to
different regions, and the rank of a boundary point is the number of boundary
points linked to it. Two boundary points b and b′ are connected if there is a
boundary path (or contour) linking them [63].

7

The boundary ∂r of a region r is the set of boundary points adjacent to both a
point inside r and a point outside r. It consists of four-connected closed paths
of boundary points. Each path is a sequence of boundary points b1, b2, . . . , bn

with n > 1 and such that bi is linked to bi + 1 ∀i with 1 ≤ i < n, and
bi 6= bj, ∀i, j with i 6= j. It can be shown that such boundaries are discrete
Jordan’s curves by embedding both the boundary and the image planes into
the Khalimsky’s plane [60,64].

According to these definitions the boundary of a discrete segmented image can
be decomposed into segments and nodes in the same way than the boundary
graph of a continuous segmented image can be decomposed into edges and
vertices. The nodes are either natural nodes or arbitrary nodes. Natural nodes
are the boundary points of rank greater than two. Arbitrary nodes are points
arbitrary selected on each boundary component consisting of a unique closed
contour (one arbitrary node selected for each closed contour). A segment is
then a maximal contour without node. On the example of Fig. 3, the boundary
points are displayed with disks. The nodes are boundary points displayed with
grey disks. There are two nodes, each one of rank 3, and three segments. On
this example both nodes are natural nodes.

Now a segmented image associated with a boundary plane can be partitioned
into a set of nodes, a set of discrete Jordan’s curves joining two nodes, and a
set of 4-connected regions. If all regions are simply connected, such a structure
is the discrete analogous of a topological map and is called a topological map
with discrete embedding, or a discrete map. When some regions are not simply
connected, there are several discrete maps associated by an inclusion relation
as there are several topological maps in the Euclidean case.

Like topological maps, discrete maps can be described by pairs of permuta-
tions. The analogous of a dart of a combinatorial map is a geometrical dart.
Each geometrical dart is associated with an end of segment. Is p is a boundary
point at the end of a segment and n the node linked to p the associated geo-
metrical dart is the pair (p, δ) where δ is the elementary direction from n to
p. By this way a discrete map induces a combinatorial map defined as follows:

– each geometrical dart of the discrete map is associated with a dart of the
combinatorial map;

– each pair of dart associated with the two geometrical darts of a same segment
forms a cycle of the permutation α;

– each sequence of darts associated with a sequence of geometrical darts shar-
ing a same node forms a cycle of the permutation σ, according to the order of
the geometrical darts around the node [63].

8

4 From model to data structure

The next step to get an image segmentation environment is now to define
a minimal data structure both to encode the models previously described
and to perform feature extraction and representation updating involved by
segmentation algorithms.

4.0.0.1 Topological data structure. As stressed above the data struc-
ture used to represent a map is simply an array of integers indexed by darts.
This array may encode either σ or ϕ. We have chosen to encode the second
one. Moreover, all the maps involved in the representation of the topology of a
segmented image are disjointed in the sense that each map 〈ϕi, αi〉 is defined
on a set of darts Di disjointed from the other ones. We define the permutation
ϕ by ϕ = ∪ϕi and the permutation α by α = ∪αi. We have ϕ|Di

= ϕi and
α|Di

= αi, and we may thus simply denote by 〈ϕ, α〉 the set of maps {〈ϕi, αi〉}.
In the same way σ denotes the union of all the σi permutations. The permuta-
tion ϕ is encoded by an array phi of integers, and for any dart d, if Di is the
set of darts that contains d, we have phi[d] = ϕi(d), and phi[−d] = σi(d).

In order both to address regions and to define the inclusion relation it is
convenient to define a region labeling. Therefore each dart is labelled with a
labeling function λ such that two darts have the same label by λ if and only
if they belongs to the same cycle of ϕ. Thus for each pair of darts (d, d′) we
have: λ(d) = λ(d′) ⇔ ϕ∗(d) = ϕ∗(d′).

Conversely, a function β associates each face label f with a dart of the corre-
sponding face cycle such that λ◦β(f) = f , and for each dart d, β◦λ(d) ∈ ϕ∗(d).
This dart, called the canonical dart of f , is an arbitrary entry point in the
dart face cycle. The face of label f is thus the cycle ϕ∗(β(f)), and for each
face label f we have: ∀d ∈ ϕ∗(β(f)), λ(d) = f . Both the function λ and the
function β are encoded by an array of integers (respectively the array lambda

and the array beta). A labeling of the maps of the running example is given
in Fig 4.

For each face f associated with a holed region, the relation children gives the
list of infinite faces associated with the holes. Conversely the relation parent

gives for each infinite face f the finite face f ′ such that f ∈ children(f ′). The
relations parent and children are the inclusion relations. Remark that each
region is associated which only one finite face and possibly several infinite
faces. Each region may thus be labeled in a unique way by the label of its
associated finite face. For instance the background region of the segmented
image of the running example is labeled by 1 which is also the label of its
associated finite face. The other faces associated with this region are the two

9

infinite faces labeled respectively by 8 and 10. The inclusion relations of the
running example are given in Fig 5. Two regions r and r′ may be neighbouring
regions because their associated faces are adjacent in one of the dual maps:
∃d ∈ ϕ∗(β(r)), and ∃d′ ∈ ϕ∗(β(r′)) such that α(d) = d′. But two regions may
also be neighbouring regions according to the parent (or children) relation.
That leads us to consider three different neighbouring modes on which we
shall come back in section 6.

4.0.0.2 Geometrical data structure. We have now to define a data
structure to represent the geometrical embedding of maps, i.e. the geometry
of interpixel boundaries. It is possible to associate each segment with a local
embedding. This embedding can be defined independently for each segment,
either explicitly by a sequence of elementary steps or implicitly in a procedu-
ral way. Another solution consists in defining a global embedding of the whole
boundaries by encoding the whole part of the boundary plane corresponding
to the image domain. The main advantage of the first solution is to provide
simplest updating, especially for segment removing. However the local encod-
ing is ill-adapted to the splitting of a region and to geometrical editing of
regions. The solution retained here is thus to encode explicitly the boundary
plane by using a global data structure called boundary image.

The boundary plane and the image plane are isomorphic. Thus an image and
its boundary image have about the same number of elements (in fact when an
image is of size N × M , its boundary image is of size (N + 1) × (M + 1) in
order to encode the image outer boundary). The boundary image encodes both
boundary points and link. A boundary point may have from two to four links.
An element of the boundary image without links cannot be a boundary point
and conversely an element of the boundary image with links is a boundary
point. Thus it is only necessary to explicitly encode links. Moreover the linking
relation is a symmetrical relation. Thus it is only necessary to encode links
along two of the four possible directions. For instance if we chose to encode
upward and rightward links it is possible to know if a boundary point p′ is
linked downward to a boundary point p by checking if its downward neighbour
p is linked upward to it. Since there is no way to recognize an arbitrary node
it is also necessary to mark nodes in the boundary image. Thus only three bits
are needed to store each entry of the boundary image.

To sum up, if the domain of an image is the set of points {(i, j) ∈ Z
2, 0 ≤

i < H, 0 ≤ j < W} the associated boundary domain is the set {(i − 1

2
, j −

1

2
), (i, j) ∈ Z

2, 0 ≤ i ≤ H, 0 ≤ j ≤ W}. The boundary domain is encoded
by an array B called boundary image where the entry B[i][j] encodes three
boolean informations: whether the boundary point p of coordinates (i− 1

2
, j− 1

2
)

is a node, whether p is linked upward to either another boundary point or to
a node, and whether p is linked rightward to either another boundary point

10

or to a node. One can retrieve the geometry of a segment by following links
from one of its geometrical darts to the other one.

4.0.0.3 Correspondence between topology and geometry. The cor-
respondence between topological and geometrical data structures is encoded
by a associating combinatorial and geometrical darts. A geometrical dart is
encoded by a point (which is a pair of coordinates) and a direction (upward,
leftward, downward or rightward). The relation between geometrical and topo-
logical darts is stored in an array of geometrical darts indexed by topological
darts. A hash table with pairs of node coordinates as keys is used to avoid
to traverse this array when looking for a geometrical dart and get an efficient
access to the topological representation from the geometrical one.

5 Overview of algorithms

We have described in the previous section the whole data structure used to
implement a topological and geometrical representation of a segmented image.
Let us now give a short overview of related algorithms.

It is possible to find the region that contains a point by scanning the boundary
image from this point until reaching a segment. If the boundary image is
scanned horizontally (for instance rightward) it is enough to look for the first
encountered vertical link. Once the segment is reached the traversal continue
by following this segment until reaching a geometrical dart. The associated
topological dart d identify a face which is an infinite face if the scanning has
reached the outer boundary of a connected component and a finite face in the
other case. The region is then given by the label λ(d) in the case of a finite
face and by the label parent(λ(d)) in the case of an infinite face.

The boundary of a region f is obtained by traversing the cycle ϕ∗(β(f)) and
the cycles ϕ∗(β(f ′

i)) of the faces f ′
i of children(f). The geometry of this

boundary is obtained by traversing the segments corresponding to the geomet-
rical darts associated with the topological darts of ϕ∗(β(f))∪

⋃
i {ϕ

∗(β(f ′
i))}.

According to the orientation of the plane the finite faces are traversed clockwise
and the infinite ones counterclockwise. The domain of a region can thus be
reconstructed by building the list of all image points that are on the left of
an upward link or on the right of a downward link and by sorting this list
relatively to lines and then to columns. The resulting list is exactly the list of
horizontal lines covering the region domain.

The construction of the representation of a segmented region r can be done
with a complexity K × |r| where |r| is the number of points of the region, and

11

where K is a constant equal to 7 in the worst case. The topological updates
involved by split and merge can be expressed by mean of elementary operations
on the permutations and on the inclusion relations. The cost of geometrical
updating involved by splitting and merging is O(

∑
s∈S |s|) where S is the set

of inserted or removed segments. All these algorithms have been described in
detail in previous works [26,20,27,50,63,51].

6 Designing a toger API

In order to validate the interest of the model of planar maps with discrete
embedding in the contex of image segmentation, we describe in this section
how to interact with such an environment, that we call toger kernel in the
following of this paper. We first give a short description of the types of objects
manipulated by such an API and then of the main functions of the interface.

6.0.0.4 Types. It is convenient to provide both a high level and a low
level of interaction. At the high level (or region level) the objects returned
by the functions of the API are regions or lists of regions, paths or lists of
paths which encode the geometry of region boundaries, and domains which
encode the geometry of regions. A region is a label encoded by an integer.
A path is a sequence of adjacent points that can be encoded by an array or
in a more suitable way by a generator, i.e. a set of functions { first, last,
next, previous, length }, that is a usual interface to traverse the elements
of a list. The domain of a region r is encoded by a sequence of pairs of points.
A point is simply a pair of integer coordinates. Each pair defines a span of
the region r which is an horizontal maximal line (P2i, P2i+1) belonging to r.
The point P2i (resp. P2i+1) is thus located on the right (resp. the left) of a
vertical interpixel boundary element of r. The list of pairs of points is the
list of all the spans of the domain of r. Finally we have seen that two adja-
cent regions can be related according to three different neighbouring modes.
The type neighbouring mode is used to denote these modes. The high level
of interaction does not require any knowledge of the internal representation.
Conversely the low level (or map level) provides interactions directly with the
topological maps. The data types used at map level are the darts, the face
labels and the geometrical darts. As seen above, both darts and face labels
are elementary types encoded by integers. We have seen that a region label is
the label of its finite face. Thus region labels are a subset of face labels. The
geometrical darts are pairs consisting of a point and a direction. Finally, the
type toger is used to refer to the whole representation. All these types are
summarized in Table 1.

12

dart set of integers

face set of integers

region set of integers

neighbouring mode { DIRECT, INNER, OUTER, ANY }

point pair of coordinates

direction { UPRIGHT, LEFTWARD, DOWNWARD, RIGHTWARD }

geometrical dart point and direction

path generator of points

domain list of pairs of points

toger topological and geometrical representation

Table 1
Types of the toger API.
6.0.0.5 Side effect functions. Among the side effect functions (i.e. func-
tions that modify the representation they receive in parameter) we need a
function that builds the representation of a segmented region: split region :
toger × region × (point × point → boolean) → list of regions. The sub-regions
of the segmented region are implicitly described by a partitioning function
f : point×point→boolean which receives two neighbouring points in parame-
ter and returns true if these points belong to a same region and false if not.
The function split region updates the topological and the geometrical repre-
sentation of a region (second parameter) according to a representation (first
parameter) and to a partitioning function (third parameter); the result is the
list of labels of the new sub-regions.

In order to remove a boundary shared by two adjacent regions we need a
function that merges these regions: merge regions : toger × region × region →
∅. This function modifies a representation (first parameter) by merging two
regions (second and third parameters). The label of the region resulting from
the merge is the same as the one of the first region. Note that the removed
part of boundary is not necessarily connected and that this operation may
disconnect to components in the boundary graph. This function is the only
low level deleting function that can be defined in such an API because other
basic delete operations (like segment removing for instance) does not guarantee
that the consistency of the representation is preserved. Higher level deleting
functions can be considered like for instance the removing of all the region
being inside a closed contour.

It may also be convenient to modify the representation by inserting a new
contour. It can be done by a function like insert contour : toger × path →
list of regions. In order to preserve the consistency of the representation, an

13

inserted contour must be either a closed contour or a contour joining two
nodes [26]. Thus the contour to insert (second parameter) must be prepro-
cessed by the function insert contour before being inserted, in order to satisfy
one of these conditions. All these functions modify both the geometry and the
topology of the representation. It is also possible to consider functions that
modify only the geometry, which can be for instance useful to locally smooth
a boundary.

6.0.0.6 Point inclusion and region localisation. We also need func-
tion to search for a region. We have shortly described how to retrieve the
region containing a given point. This functionality can be provided by a func-
tion like find region : toger × point → region which returns the label of the
region containing a point (second parameter) according to a representation
parameter). It is also possible to define a function belongs to : toger × point ×
region → boolean that checks if a point parameter) belongs to a region (third
parameter) according to the representation (first parameter),

6.0.0.7 Geometrical features. The main geometrical features are the
domain of a region which can be obtained by a function like region domain :
toger × region → domain, and the geometry of its boundary which can be ob-
tained by a function like region boundary : toger × region → list of closed path.
Since a boundary may consist of several closed path, it its convenient to get
the outer boundary as the first element of the returned list. It may also be
convenient to get only the outer boundary: region outer boundary : toger ×
region → closed path and the part of boundary shared by two adjacent regions
by using the function regions common boundary : toger × region × region →
list of paths. Geometrical features of segment may also be useful. That leads
us to consider functions like segment : toger × dart → path, that returns a
path which describes the geometry of the segment associated with a dart, and
segment length : toger × dart → integer, that returns the segment length. Sev-
eral different length estimators can be used, such as the number of elementary
steps or the length of the associated Euclidean path [65].

6.0.0.8 Low level topological features. Defining the interaction with
the low topological level is straightforward. Two functions lambda : toger ×
dart × face and beta : toger × face → dart implement the functions λ and
β associating darts with labels. The functions alpha : toger × dart → dart,
sigma : toger × dart → dart, and phi : toger × dart → dart implements the
permutations α, σ, and ϕ used to traverse the combinatorial representation
of maps. Finally the connected components can be traversed with function
parent : toger × face → face that returns for a face f the face parent(f) if f

is infinite or a void value if f is finite, and with the both functions first child :

14

toger × face → face and next child : toger × face → face that implement the
relation children.

6.0.0.9 Topological marking. It is sometimes necessary to traverse the
graph of regions with respect to some marking. By associating marks to dart
it is possible to maintain the consistency of the marking when doing a side
effect operation. When an edge (d1, d2) is split into two adjacent edges (d1, d2)
and (d′

1, d
′
2), the dart d′

i receives a copy of the marks of the dart di. By this
way, when a region is split into subregions, it is possible without overhead to
preserve the consistency of marks on faces and more generally on any contour.
It is also possible to preserve the consistency of contour marking through
region merging. When a region r′ is merged with a region r, and if the common
boundary of r and r′ is a unique edge e, the marking can be preserved by
marking the face associated with r before removing e. If there are several
edges e1, ..., en, the removing of these edges disconnects from one to n − 1
components of the map. In this case it is also necessary to unmark some edges
in these components. It is possible to mark an oriented edge, an non-oriented
edge (by marking a cycle of α), a node (by marking a cycle of σ), or a face
boundary (by marking a cycle of ϕ). The number of marks depends on the
space allocated for each mark. By allocating one byte per dart we get height
marks per dart which is enough for most of traversal algorithms and which
the memory cost is reasonable with modern computers. The type set of flags

is a boolean combination of flags used to manipulate the marks.

The interface of marking operations can be defined like the one of geometri-
cal feature functions. The functions mark region boundary : toger × region ×
set of flags → ∅ and unmark region boundary : toger × region × set of flags

→ ∅ respectively marks and unmarks the boundary of a region. Similarly,
the functions mark outer boundary : toger × region × set of flags → ∅ and
unmark outer

boundary : toger × region × set of flags → ∅ respectively marks and unmarks
only the outer boundary of a region, and mark common boundary : toger ×
region × region × set of flags → ∅ and unmark common boundary : toger ×
region × region × set of flags → ∅ the part of boundary shared by two re-
gions. Finally we need functions like mark all darts : toger × set of flags → ∅

and unmark all darts : toger × set of flags → ∅ to set and clear marks on all
the darts, and a function dart is marked : toger × dart × set of flags → boolean

to check if a dart is marked. Each time, a parameter of type set of flags is used
to specify which is the mark (or are the marks) to modify.

6.0.0.10 High level topological functions. The neighbourhood of a
region may be considered according to the three neighbouring modes. Both of
the neighbouring modes, the inner and the outer ones, are oriented relations.

15

The third one is a symmetric relation. A region r′ is a direct neighbour of a
region r if the intersection of their outer boundaries is not empty. A region
r′ is an inner neighbour of a region r if the outer boundary of r′ intersects
the internal boundary of r. In that case r is an outer neighbour of r′. In
other terms a region r′ is a direct neighbour of a region r if ∃d ∈ ϕ∗(β(r)),
and ∃d′ ∈ ϕ∗(β(r′)) such that α(d) = d′. A region r′ is an inner neighbour
of a region r (or r is an outer neighbour of r′) if ∃d ∈ ϕ∗(β(r′)) such that
parent(λ(α(d))) = r. The neighbouring modes of the regions of the running
example are given in Fig. 7.

The neighbourhood of a region may also be considered according to the topo-
logical marking. The neighbouring relation is thus restricted such that two
regions are not considered as neighbouring regions if their common bound-
ary is marked, according to a given set of marks. That leads us to define the
interface of the function region neighbourhood that gives the neighbourhood
of regions as a function of signature: toger × region × neighbouring mode ×
set of flags → list of regions. It is also useful to have a function that gives any
neighbouring region of a given one, for instance when looking for a neighbour-
ing region to merge with. So the function any region neighbour : toger × region

× neighbouring mode × set of flags → region returns a neighbouring region
of a region according to a neighbouring mode and a set of marks. The func-
tion are neighbours : toger × region × region × neighbouring mode → boolean

checks if two regions are neighbouring regions. Finally more general functions
may be easily defined, such as a the function inner regions : toger × region →
list of regions which gives the list of regions located inside the outer boundary
of a given region, or the function all regions : toger → list of regions which gives
the list of all the currently defined regions.

6.0.0.11 Updating the region attributes. When implementing a seg-
mentation method it is generally necessary to attach attributes to regions.
These attributes have to been initialized and/or updated when regions are
split or merged. It may raise a problem of software engineering when the
split or the merge is activated by a program module which is not the one
which has in charge the update of attributes. In that case the activation of at-
tribute update should be done automatically by the kernel. A classic solution
to this problem consists in attaching processings to each side effect function.
For instance, we can attach to the region split action a function f which the
signature is region × region × parameter → ∅, where parameter is a type of
generic parameter (like Object in Java or void* in C and C++). Each time the
region split function is executed, the function f is automatically called by the
kernel with the regions to be merged as parameters. It may be also possible to
attach a list of functions, or functions being called either before or after the
side effect. This mechanism is implemented for each side effect function.

16

For instance let us suppose we want to attach descriptive statistical moments
to each region. These moments are be used to compute features like mean or
variance. Since these moments are additive, when two regions are merged, the
moments can be updated by simply adding themselves the moments of the
same order of each region and storing the result in the remaining region [27].
This can easily be done by the way of the mechanism described above.

7 Conclusion and perspectives

In this paper we have given an overview of the use of planar maps with discrete
embedding in the context of image segmentation. We have described how to
represent the topology of a segmented image with a set of planar maps and how
to associate with planar maps the boundaries of a discrete segmented image.
We have show how this model can be used to implement most of operations
involved in the design of segmentation algorithms, such as reconstruction of
the geometry of the boundary and of the domain of a region, point inclusion,
region localisation, obtaining of geometric and topological features, and up-
dating involved by region splitting and merging. We have described the data
structures and the algorithms that permits to use this model in the context
of image segmentation.

This model has been used with success to implement various segmentation ap-
plications. We have thus decided to capitalize on this experiment to develop a
portable general image representation library implementing the model and the
algorithms summarized in this paper. A first version of the API of this library
have been presented in section 6. Finally we have illustrated this approach by
describing a full example of constrained segmentation method designed with
this API. The General Image Representation Library will be available under
LGPL in the course of year 2005.

In parallel we are working on the extension on this model to represent and seg-
ment three-dimensional discrete images. Two different models were proposed,
one of them by Braquelaire, Desbarats, Domenger and Wütrich [35,38,66,67]
and the other one by Bertrand, Damiand and Fiorio [36,37,68]. We are cur-
rently collaborating to mix both models and design an implementation of a
3D general image representation library [39].

References

[1] F. Ferri and E. Vidal. Colour image segmentation and labeling through
multiedit-condensing. PRL, 13:561–568, 1992.

17

[2] M. Suk. A new segmentation technique based on partition mode test. PaRe,
16(5):469–480, 1983.

[3] C. J. Nicol. A systolic approach for real time connected component labeling.
Computeer vision and Image understanding, 61(1):17–31, January 1995.

[4] G.M. Hunter and K. Steiglitz. Operations on images using quad trees. IEEE
Trans. On Pattern Analysis and Machine Intelligence, 1(2):145–153, April 1979.

[5] R.C. Dyer, A Rosenfeld, and S Hanan. Region representation: Boundary codes
from quadtrees. ACM: Graphics and Image Processing, 23(3):171–179, March
1980.

[6] H. Samet. Region representation: Quadtrees from boundary codes. ACM :
Graphics and Image Processing, 23(3):163–170, March 1980.

[7] C. Ang, H. Samet, and C.A. Shaffer. A new region expansion for quadtrees.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-
12(7):682–686, 1990.

[8] S.L. Tanimoto. Image data structures. In S. L. Tanimoto and A. Klinger,
editors, Structured Computer Vision, pages 31–56. Academic Press, New York,
1980.

[9] M. Bister, J. Cornelis, and A. Rosenfeld. A critical view of pyramid
segmentation algorithms. Pattern Recognit Letter., 11(9):605–617, 1990.

[10] D. Willersinn and W.G. Kropatsch. Dual graph contraction for irregular
pyramids. In International Conference on Pattern Recogntion D: Parallel
Computing, pages 251–256, Jerusalem, Israel, 1994. International Association
for Pattern Recognition.

[11] P. Meer. Stochastic image pyramids. Computer Vision Graphics Image
Processing, 45:269–294, 1989.

[12] A. Montanvert, P. Meer, and A. Rosenfeld. Hierarchical image analysis using
irregular tesselations. PAMI, 13(4):307–316, 1991.

[13] W. Kropatsch. Building irregular pyramids by dual graph contraction. IEEE
Proc. Vision, Image and Signal Processing, 142(6):366–374, 1995.

[14] M. Pietikainen, A. Rosenfeld, and I. Walter. Split and link algorithms for image
segmentation. Pattern Recognition, 15(4):287–298, 1982.

[15] J.M. Jolion and A. Montanvert. The adaptative pyramid : A framework for
2D image analysis. Computer Vision, Graphics and Image Processing : Image
Understanding, 55(3):339–348, May 1992.

[16] W. Kropatsch. Preserving contours in dual pyramids. pages 563–565, 1988.

[17] L. Brun and W. Kropatsch. Introduction to combinatorial pyramids. In
G. Bertrand and A. Imiya, editors, Digital and image geometry, volume 2243
of LNCS, pages 108–127. Springer, 2001.

18

[18] J.P. Braquelaire and P. Guitton. A model for image structuration. In Proc. of
Computer Graphics International’88, pages 426–435. Springer, 1988.

[19] K.C. Keeler. Map Representations and Optimal Encoding for Image
Segmentation. Phd thesis, Harvard University, 1990.

[20] J.-P. Domenger. Conception et implémentation du noyau graphique d’un
environnement 2D 1

2
d’édition d’images discrètes. PhD thesis, Univ. Bordeaux 1,

avril 1992.

[21] C. Fiorio. Approche interpixel en analyse d’images : une topologie et des
algorithmes de segmentation. Thèse de doctorat, Université Montpellier II,
novembre 1995.

[22] P. Jasiobedzki. Adaptive adjacency graphs. In Proceedings, SPIE Geometric
methods in Computer Vision, San Diego, CA, 1993.

[23] L.G. Shapiro. Connected component labeling and adjacency graph construction.
In Kong and Rosenfeld, editors, Topological Algorithms for Digital Image
Processing (Machine Intelligence and Pattern Recognition, Volume 19).
Elsevier, 1996.

[24] P. Baudelaire and M. Gangnet. Planar maps: an interaction paradigm for
graphic design. In Proc. of CHI’89, pages 313–318. Addison-Wesley, 1989.

[25] M. Gangnet, J.C. Hervé, T. Pudet, and J.M. VanThong. Incremental
computation of planar maps. In Proc. of SIGGRAPH’89, 1989.

[26] J.P. Braquelaire and P. Guitton. 2 1

2
scene update by insertion of contour.

Computer and Graphics, 15(1):41–48, 1991.

[27] L. Brun. Segmentation d’images couleur à base topologique. PhD thesis,
Université Bordeaux 1, december 1996.

[28] C. Fiorio. A topologically consistent representaion for image analysis: the
topological graph of frontiers. In S. Miguet, A. Montavert, and S. Ubéda,
editors, Lectures Notes in Computer Sciences, volume 1176, pages 151–162,
1996.

[29] J.P. Braquelaire and L. Brun. Image segmentation with topological maps
and inter-pixel representation. Journal on Visual Communication and Image
Representation, 9(1):62–79, 1998.

[30] U. Köthe. Xpmaps and topological segmentation – a unified approach to finite
topologies in plane. In A. Braquelaire, J.-O. Lachaud, and A. Vialard, editors,
Proc of DGCI’02, volume 2310 of LNCS, pages 22–33. Springer, 2002.

[31] J. Benois-Pineau, A. Braquelaire, and A. Ali-Mhammad. Interactive fine object-
based segmentation of generic video scenes for object-based indexing. In Ebroul
Izquierdo, editor, proc. of WIAMIS’2003, pages 200–203, 2003.

19

[32] J. Benois-Pineau, G. Peretie, and A. Braquelaire. Adaptive video pre-processing
for bit-rate reduction in object-based predictive coding schemes. In proc. of the
7th World Multiconference on Systemics, Cybernetics and Informatics, pages
27–30, Orlando, Florida, July 2003.

[33] P. Krämer, J. Benois-Pineau, and J.P. Domenger. Scene similarity measure for
video content segmentation in the framework of rough indexing paradigme. In
Proc of AMR’2004, pages 144–155, 2004.

[34] P. Lienhardt. N-dimensional generalized combinatorial maps and cellular
quasimanifold. Int. Journ. of Comp. Geom. and Appl., pages 275–324, 1994.

[35] J.P. Braquelaire, P. Desbarats, J.P. Domenger, and C. Wütrich. A topological
structuring for aggregates of 3D discrete objects. In Proc of GBR’99,
Osterreichische Computer Gesellschaft, ISBN 3-8580-126-2, pages 193–202,
1999.

[36] Y. Bertrand, G. Damiand, and C. Fiorio. Topological encoding of 3d segmented
images. In Discrete Geometry for Computer Imagery, number 1953 in Lect. Note
in Comp. Science, pages 311–324, Uppsala, Sweden, december 2000.

[37] G. Damiand. Définition et étude d’un modèle topologique minimal de
représentation d’images 2D et 3D. Thèse de doctorat, Université Montpellier
II, décembre 2001.

[38] P. Desbarats. Strucuration d’images segmentées 3D discrtes. Thèse de doctorat,
Université Bordeaux 1, décembre 2001.

[39] A. Braquelaire, G. Damiand, J.P. Domenger, and F. Vidil. Comparaison and
convergence of two topological models for 3D image segmentation. In proc. of
GBR 2003, ISBN 887146579-2, pages 32–43, 2003.

[40] L. Brun, J.P. Domenger, and J.P. Braquelaire. Discrete maps: a framework for
region segmentation algorithms. In J.M Jolion and W Kropatsch, editors, Proc.
of Graph based Representations, GbR’97, pages 83–92. Springer-Verlag, 1998.

[41] A. Rosenfeld and A. Kak. Digital Picture Processing, volume 2. Academic
Press, 1982.

[42] R.G. Loomis. Boundary networks. Communications of the ACM, 8(1):44–48,
1965.

[43] L.W. Chang and K.L. Leu. A fast algorithm for the restoration of images based
on chain codes descriptions and its applications. Computer Vision, Graphics
and Image Processing : Image Understanding, 50:296–307, 1990.

[44] A. Rosenfeld. Picture Languages. Academic Press, 1979.

[45] S.V. Raman, S. Sarkar, and K.L. Boyer. Hypothesizing structures in
edge-focused cerebral magnetic resonance images using graph-theoretic cycle
enumeration. CVGIP: Image Understanding, 57(1):81–98, 1993.

20

[46] P. Morse. Concepts of use in contour map processing. Communications of the
ACM, 12(3):147–152, 1969.

[47] A. Rosenfeld. Digital topology. Amer. math. monthly, 86:621–630, 1979.

[48] W.T. Tutte. A census of planar maps. Canad.J.Math., 15:249–271, 1963.

[49] R. Cori. Un code pour les graphes planaires et ses applications. Thèse d’état
de l’université Paris VII, and Astŕisque 27, 1973 and 1975.

[50] L. Brun and J.P. Domenger. A new split and merge algorithm based on discrete
map. In Proc.of WSCG’97, pages 21–30, 1997.

[51] L. Brun, J.P. Domenger, and M. Mokhtari. Incremental modifications on
segmented image defined by discrete maps. Journal of visual commmunication
and Image representation, 14:251–290, 2003.

[52] M. Gangnet and J.M. Van Thong. Robust boolean operations on 2D paths. In
Proc. of COMPUGRAPHICS’91, pages 434–444, 1991.

[53] H. Freeman. On the encoding of arbitrary geometric configurations. IRE Trans.
Electr. Compu., 10:260–268, June 1961.

[54] R.D. Merrill. Representation of contours and regions for efficient computer
search. Communications of the ACM, 16(2):69–82, 1973.

[55] T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Sci.,
Washington, 1982.

[56] R. Brice and C.L. Fennema. Scene analysis using regions. Artificial intelligence,
1:205–226, 1970.

[57] T.Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey.
Computer Vision, Graphics and Image Processing : Image Understanding,
48:357–39, 1989.

[58] V.A. Kovalevsky. Finite topology as applied to image analysis. Computer
Vision, Graphics and Image Processing : Image Understanding, 46:141–161,
1989.

[59] H. Bieri. Hyperimages – an alternative to the conventional digital images. In
Eurographics’90 proceedings, pages 341–352, 1990.

[60] E. Khalimsky, R. Kopperman, and P.R. Meyer. Boundaries in digital planes.
Journal of applied Math. and Stocastic Analysis, 3:27–55, 1990.

[61] J.P. Braquelaire and J.P. Domenger. Intersection of discrete contours. In Proc.
of Compugraphics’91, pages 434–444, 1991.

[62] E. Ahronovitz, J.P. Aubert, and C. Fiorio. The star-topology: a topology for
image analysis. In 5th DGCI Proceedings, pages 107–116, 1995.

[63] J.P. Braquelaire and J.P.Domenger. Representation of segmented images with
discrete geometric maps. Image and vision Computing, 17:715–735, 1999.

21

[64] E. Khalimsky, R. Kopperman, and P.R. Meyer. Computer graphics and
connected topologies on finite ordered sets. Topology and its Applications, 36:1–
17, 1990.

[65] A. Vialard. Geometrical parameters extraction from discrete paths. Lecture
Notes in Computer Science, 1176:24–35, 1996. Discrete Geometry for Computer
Imagery’96.

[66] A. Braquelaire, P. Desbarats, and J.P. Domenger. 3D split and merge with
3-maps. In In proc. of GBR 2001, ISBN 887146579-2, pages 32–43, 2001.

[67] P. Desbarats and J.-P. Domenger. Retrieving and using topological
characteristics from 3D discrete images. In Preoceedings of the 7th Computer
Vision Winter Workshop, pages 130–139. PRIP-TR-72, 2002.

[68] Y. Bertrand, G. Damiand, and C. Fiorio. Topological map : minimal encoding
of 3D segmented images. In In proc. of GBR 2001, ISBN 887146579-2, pages
63–73, 2001.

22

2 3

4

5

6

7

9

10

8

11

1

a

f

g

h

c d eb

(a) (b)

5

4

-3
2

-4

-2

-88

-1

3

-7

7

-11 11

1

-10

9

10

-9
-6

6
-5

(c) (d)

(e) (f)

Fig. 1. Representation of the topology and of the geometry of a segmented image:
(a) a segmented continuous image with its region boundaries, (b) the associated
boundary graph, (c) the representation of this graph by combinatorial maps, (d) a
discrete segmented image with the same topology, a representation of the geometry
of regions (e) with pixel based contours, and (f) with interpixel contours.

23

4

-47

-6

-5

-3

36 5

-2

2

-7

-5 -3-6 3

5

-7
-4-2 7

6

4 2

(a) (b)

Fig. 2. The map 〈ϕ, α〉 of Fig. b is obtained by defining a vertex for each face of the
map 〈σ, α〉 of Fig. a and by crossing each edge of the map 〈σ, α〉 by an edge defined
by the same pair of darts. The resulting graph is a representation of the map 〈ϕ, α〉
according to an inverse orientation (or of the map 〈ϕ−1

, α〉).

Fig. 3. Example of interpixel boundary defined in the half-integer plane.

5

4

-3
2

-4

-2

-88

-1

3

7

-11 11

1

-10

9

10

-9
-6

6
-5

-71

2

3

4

5

6

7

8

9

10

-1

d λ(d) d λ(d)

-11 10 1 1

-10 9 2 8

-9 9 3 8

-8 5 4 8

-7 3 5 3

-6 4 6 2

-5 2 7 4

-4 3 8 6

-3 2 9 5

-2 4 10 6

-1 -1 11 7

f β(f)

-1 -1

1 1

2 -3

3 5

4 7

5 -8

6 8

7 11

8 4

9 -9

10 -11

Fig. 4. A face labeling of the running example. The label in gray are labels of infinite
faces.

24

f parent(f)

8 1

9 4

10 1

f children(f)

1 {8, 10}

4 {9}

Fig. 5. The inclusion relation of the running example.

Fig. 6. Reconstruction of the domain of a region. The dark disks represent boundary
points and the white squares image points.

r1

r3

r6
r4

r5

r0

r2

r1 r2 r3 r4 r5 r6 r7

r1 I I I I

r2 O D D

r3 O D D

r4 O D D I I

r5 O D

r6 O D

r7 O

Fig. 7. Example of region neighbouring relations. The letters D, I and O denote
respectively the direct, inner and outer neighbouring. For instance the second line
of the array means that region r1 has one outer neighbour (the region r0), two direct
neighbours (the regions r2 and r3), and two inner neighbours (the regions r4 and
r5).

25

